
DOCUMENT RESUME

ED 368 789
TM 021 306

AUTHOR Schumacker, Randall E.

TITLE A Comparison of the Mallows' C subscript p and
Principal Component Criteria for Best Model Selection

in Multiple Regression.

PUB DATE Apr 94

NOTE 47/7.; Paper presented at the Annual Meeting of the

American Educational Research Association (New

Orleans, LA, April 4-8, 1994).

PUB TYPE Reports Evaluative/Feasibility (142)
Speeches/Conference Papers (150)

EDRS PRICE MF01/PCO2 Plus Postage.

DESCRIPTORS Comparative Analysis; *Criteria; *Estimation
(Mathematics); Factor Analysis; *Models; Prediction;

Regression (Statistics); Research Methodology;

Research Problems; *Selection; Simulation;

Statistical Analysis; *Statistical Studies

IDENTIFIERS Cross Validation; *Mallows C(p) Criterion;
Multicollinearity; Principal Components Analysis;

Statistical Package for the Social Sciences;

Statistical Packages; *Subset Analysis

ABSTRACT
A population data set was randomly generated from

which a random sample was drawn. This sample was randomly divided

into two data sets, one of which was used to generate parameter

estimates, which were then used in the second data set for

cross-validation purposes. The best variable subset models were

compared between the two data sets on the R-squared and the Mallows'

C(p) criteria for best model selection. The cross-validation method

postulated a correlated predictor set. The parameter estimates,

standard errors, and t values of the best variable subset models were

then compared between the multiple regression approach with

correlated predictors and the principal components method that

creates orthogonal predictor variables. The Mallows' C(p) values were

inflated and did not always indicate the best variable subset model

upon cross validation. The R-squared values are the same regardless

of correlated or orthogonal predictors; therefore, parameter

estimates and standard errors in a principal components analysis

should be investigated. This is especially the case in the presence

of multicolinearity in the best variable subset model predictor set.

The use of PROC IM1 procedures for cross validation is discussed. Ten

tables and one figure illustrate the discussion. An appendix presents

analysis programs. (Contains 23 references.) (Author/SLD)

***********************************************************************
Reproductions supplied by EDRS are the best that can be made

from the original document.

***********************************************************************



A Comparison of the Mallows Cp
and

Principal Component Regression Criteria
for

Best Model Selection in Multiple Regression-

U S PAATMENT OF EDUCATION
CIIIKe or Educationst Rematch and irnroovement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

edocurnent has been reprOduCed SS
received Iron, the person or creganitahon
Originatmg

0 Minor changes sane teen made to trnprOye
reproduction cluality

Points ol vie*/ Or OptmOns Statel in this docv
rnent do not necessarily represent 01140,51
OERImSdiOnWISOhCy

Randall E. Schumacker, Ph.D.
Educational Research
College of Education

University of North Texas
Denton, TX 76203-6857
(817) 565-3962 Office

(817) 565-2185 FAX
schmckr@coe.unt.edu

PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

tuDil
cdt, R.

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC).-

Paper presented at the American Educational Research Association
April 4-8, 1994 New Orleans, Louisiana

'The author wishes to express his deep appreciation to Dr. Panu
Sittiwong, Academic Computing Center, at the University of North

Texas for his assistance in coding the SAS programs.

BEST Oil lAkARE



ABSTRACT'

A cross validation comparison of the Mallows Cp subset model

selection criteria using randomly generated data sets indicated

that different subset models may be identified. The principal

coffponent regression method using Type II sum of squares with

orthogonal principal component variables indicated a slightly

different set of "best" variables. The two methods in the presence

of multicollinearity can yield different subset models. It is

recommended that researchers base regression models on substantive

theory, model validation, and effect sizes for proper model testing

and interpretation.

'SPSS-X has program commands which permit the cross validation of

results in multiple regression, however, SAS does not. Mort=,over,

SAS outputs the Mallows Cp statistic, but SPSS-X regression

procedures do not. These factors have prompted th F? use of PROC IML

procedures to permit cross validation and the output of the Mallows

Cp statistic.



A Comparison of the Mallows Cp
and

Principal Component Regression Criteria
for

Best Model Selection in Multiple Regression

Multiple regression permits model testing wherein a set of

independent variables are hypothesized to predict a dependent

variable. Oftentimes when the set of variables selected do not

significantly predict, the researcher searches for a "subset" of

variableg that provides the best prediction model. The statistical

packages provide several stepwise methods for this purpose.

A review of the literature, however, indicated that most

researchers misuse stepwise methods in determining the best

predictor set or interpreting the importance of predictor variables

(Huberty, 1989; Snyder, 1991; Thompson, 1989; Thompson et al.,

1991, Welge, 1990) . Tracz, Brown, and Kopriva (1991) summarized

much of the literature to indicate that the results of stepwise

procedures do not yield a "best" equation because different

criteria can be used in the selection of different sets of

variables; that when variables are intercorrelated, there is no

satisfactory way to determine the relative contribution of the

variables to R-squared because various subsets of variables could

yield a similar R-squared value; that stepwise methods inflate Type

I error rates by not using the correct degrees of freedom in

calculating the change in R2; and that the order of variable entry

is incorrectly interpreted as defining the importance of the

variable or "best set" of predictors.
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Current research literature indicates that the all possible

subset approach is preferred over the stepwise methods in

determining the best model (Berk, 1977; Cummings, 1982; Thayer,

1986; Davidson, 1988; Henderson & Denison, 1989; Welge, 1990;

Thayer, 1990; Tracz, Brown, & Kopriva, 1991) . Several criteria,

however, are available for selecting the best subset model: R- ,

Adj. MSE, C, or the principal component regression method.

Constas and Francis (1992) presented a graphical method for

selecting the best subset regression model using R2 and Adj. R.

They plotted R- and Adj. R: against the number of predictors in the

model. The maximum number of predictors for best subset model was

de'cermined at the point where the R2 and/or Adj. R2 values

descended.

The Mallows Cp criteria has also been recommended for

selecting the best subset of predictor variables in contrast to the

stepwise methods using a sample data set (Tracz, Brown, & Kopriva,

1991; Zuccaro, 1992) . The Cp statistic measures the effect of

underfitting (important predictors left out of the model) or

overfittinq (include predictors that make no contribution or are

marginal) . Mallows (1966; 1973) has suggested that the selection

of the best sut,set model with the lowest bias is indicated by the

smallest Mallows Cp criteria, especially in the presence of

multicollinearity. The SAS package (Freund & Littell, 1991)

currently prints the Mallows Cp value and a variance inflation

factor (VIF) which can be used to determine which variables may be

5
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involved in the multicollinearity. Pohlmann (1983) had previously

noted that multicollinearity among a set of predictor variables

didn't affect the Type I error rate, but did affect the Type II

error rate and width of the confidence interval. His findings

suggest that sample size and model validity could compensate for

multicollinearil-y effects, especially when certain research

questions require models with highly correlated predictors, e.g.

+ P:X-1 + e.

The principal component regression (PCR) approach has also

been proposed as a criteria for selecting the best predictor model.

This method appears to be useful when predicting values in one

sample based upon estimates from another sample and when

multicollinearity ex:sts among a set of variables (Morrison, 1976).

The rationale for using a PCR approach is when the mean squared

error of a biased estimate is smaller than the variance of an

unbiased estimate. The PCR method, however, is not appropriate for

multiple regression subset models containing interactions (Aiken &

West, 1993) nor when models depict nonlinear correlated predicter

sets. The PCR method creates a set of new variables called

principal components, which are uncorrelated or orthogonal, and

theretore preclude it from being used in these types of models.
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Summary

The all possible subset approach is being recommended as an

alternative over stepwise methods for selecting the best set of

predictor variables. The Mallows Cp criteria or a principal

components regression approach is being advocated for determining

the best subset model over the use of R, especially when the

predictors are correlated. The principal component regression

method, which determines the best model for prediction by creating

orthogonal variables, appears more useful when estimates from one

sample are used to predict in another sample or multicollinearity

exists among the predictors.

How do these criteria compare when selecting the best subset

model? When might a researcher choose one criteria over another

for selecting the best model? A comparison of the Mallows Cp

selection criteria upon cross validation and a comparison of the

parameter estimates and standard errors between the multiple

regression and the PCR approach should shed further light on their

usefulness for subset model selection. An applied example will

further elaborate the comparison of the two criteria.



METHODS AND PROCEDURES

Simulation

5

An SAS program generated a heuristic population(n = 10,000

observations) with a dependent variable and ten correlated

predictor variables (Appendix) . The program then randomly sampled

the population data set for n = 200 observations. This data set

was then randomly divided to create two separate data sets of equal

size (n1 = n2 = 100 observations).

The population correlation matrix, variable means and standard

deviations are in Table 1. The correlation matrix and variable

means and standard deviations for the sample data set used to

compute the parameter estimates is in Table 2. The correlation

matrix and variable means and standard deviations for the cross

validation data set are in Table 3. Parameter estimates, computed

using the ordinary least squares criterion from the first data set,

were used with the second data set to calculate R: and the Mallows

Cp values, and to determine the best variable subset models.

Insert Tables 1,2,3

Here

Table 4a indicates the model subset selection for each sample

data set. Table 4b indicates a comparison between the R2 and

8
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Mallows Cp values from the estimation sample data set to the cross

validation sample data set using parameter estimates from the

estimation sample. The Mallows Cp values were inflated because the

parameter estimates applied to the second data set altered the

residual sums of squares used in the formula to calculate it.

Although the relative ordering of Cp values were the same, these

values did not indicate the same single best variable subset model

in the second data set.

Insert Tables 4a and 4b

Here

Table 5 compares the parameter estimates between the Mallows

Cp and the principal components regression method for each best

variable subset model. The R- values will be the same regardless

of which method is used, the real difference is seen when comparing

the relative significance of the parameter estimates. The Mallows

Cp method with correlated predictors indicated that all the

parameter estimates were signif.cant. This was not the case in the

principal components regression approach. An applied example will

further illustrate this distinction between the two methods.

Insert Table 5

Here



7

APPLIED EXAMPLE

Subjects

Participants in the study were a cohort of students accepted

into the Texas Academy of Mathematics and Science (TAMS) at ,the

University of North Texas in Fall, 1993. TAMS is an early college

entrance program in which students earn approximately 60 hours of

college credit by taking University of North Texas courses.

Students enter TAMS at the beainning of their 11.th year in high

school. They live on campus in a special residence hall and take

regular university courses in mathematics, science and the

humanities. After two years, participants receive a special high

school diploma and have amassed at least 60 hours of college

credit. Each year approximately 200 high school sophomores, who

have met the selection criteria and completed the 10th grade, are

accepted into the Texas Academy of Mathematics and Science.

In the study year, TAMS accepted 204 students. Of these, 156

students attended an August orientation, which occurred a week

prior to their first semester of college coursework, and completed

the LASSI. There were 80 females and 76 males who participated in

the study. The students who took the LASSI were similar in

demographic background and academic ability as previous classes

because of the academy's consistent admission requirements and pool

of applicants. The participants SAT-M and SAT-V means and standard

deviations, respectively, were: M.651, SD=57; and M=530, SD.75.
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Instrument

The LASSI is an English language assessment tool designed to

measure college students' use of learning and study strategies. It

was designed to provide assessment and pre-post achievement

measures for students participating in a learning strategies and

study skills project. A high-school version is available, but it

was not recommended for use with accelerated students in these

programs (Eldredge, 1990) . The LASSI can be administered in a

group setting in approximately 30 minutes. The carbonless test

format allows participants to score their own assessment and take

a copy of the results with them from the testing session.

The LASSI's ten subscales focus on thoughts and behaviors

related to successful learning. The ten subscales are (1)

attitude; (2) motivation; (3) time management; (4) anxiety; (5)

concentration; (6) information processing; (7) selecting the main

ideas; (8) study aids; (9) self-testing; and (10) test strategies

(for more details see, Weinstein, 1987) . Reliability studies

reported Cronbach alpha internal consistency values ranging from

.70 to .86 and test-retest reliabilities from .70 to Validity

studies have also reported normative data for high school and

college students with different instruments for each group

(Weinstein, Palmer, & Schulte, 1987) . Students respond to

individual items on each subscale using a five-point scale: (5)

very typical of me; (4) fairly typical of me; (3) somewhat typical

of me; (2) not very typical of me; and (1) not at all typical of

1.1
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me. Some item values are reverse keyed before being added to

obtain a subscale score. The subscale scores are compared by

graphing them onto a normal curve equivalent percentile chart.

According to the LASSI user's manual (Weinstein, l987\,

students scoring above the 75th percentile do not need to improve

that specific skill or strategy. Students scoring between the 75th

percentile and the 50th percentile should consider improvement.

Students scoring below the 50th percentile on a subscale need

assistance to improve that skill or strategy. For example,

students scoring below the 50th percentile on the anxiety suhscale

would be considered anxious about being in college. Likewise,

students scoring below the 50th percentile on the motivation

subscale lack appropriate motivation to do college level work

effectively.

Research Question

The research question of interest was whether the ten LASSI

subscales could predict a student's college grade point average

after one semester of college coursework. A related question

pertained to whether a "subset" of the ten LASSI subscales could

better predict college grade point average for this sample of

students. Students not maintaining at least a 2.50 grade point

average after one semester of college coursework were dismissed

from the Academy. Knowledge of which subscales are best predictors

of college grade point average would aid staff in identifying

potential at-risk students upon enZ:ering the Academy.

12
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Data Analysis

The data were analyzed using a SAS statistical program

(Appendix) . The student's college grade point average was

predicted by the ten LASSI subscales using PROC REG with the

SELECTION statement requesting the best subset model criteria. The

PROC PRINCOMP procedure was used to create ten orthogonal principal

component variables. The principal component variable parameter

estimates were then computed using the PROC REG procedure. The

number of significant principal component parameter estimates were

subsequently identified. These procedures are outlined in the SAS

System for Regression manual (Freund & Littell, 1991).

RESULTS

The correlation matrix, means and standard deviations of the

ten LASSI subscales are in Table 6. The intercorrelations among

the subscales indicated that Anxiety/Worry was not significantly

correlated with Time Management, Information Processing, Support

Techniques/MaLerials, and Self Testing/Class Preparation. The

lowest subscale mean was on Selecting Main Ideas.

Insert Table 6 Here

1 3
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Mallows Cp

The Mallows Cp statistic is calculated as: Cp = (SSEp/MSE)

(n 2p) 4- 1 (Freund & Littell, 1991) or Cp = [1/eV (RSSp)- n + 2p]

(Mallows, 1973) ; where RSSp is the residual sum of squares from the

best variable subset model, MSE and/or er is the mean square error

from !.-_he full model with all predictor variables, n = sample size,

and p = number of predictors.

The procedure for finding the optimum subset of all possible

subset sizes requires computing 2' equations. The ten subscale

predictors in the model yielded 1024 regression equations (21:) with

associated selection criteria statistics (Note: the determination

of the number of subset equations generated for n predictor

variables from an m variable full model is: m!/[p!im-p)!]. For

example, the number of 2 variable subset equations generated from

a 10 variable model would be 45). Only the single best variable

subset models of each size are reported.

The best subset model for each subset size with the

corresponding criteria are in Table 7. The Mallows Cp of 2.72

indicated a four variable subset model. The four variable subset

model for predicting college grade point average consisted of the

four subscales: Motivation (2), Anxiety/Worry (4), Support

Techniques/Materials (8) , and Self Testing/Class Preparation (9).

The Cp criteria also indicated the overfitting caused by

having too many variables in the model. The large Cp values

indicated equations with larger mean square error. If Cp > (p +

1), for any subset size p, then bias was present. If Cp < (p +

14
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1) , for any subset size p, then the model contained too many

variables. A plot of the Cp values against the number of

predictors, compared to a plot of the (p + 1) values, visually

displays this phenomenon (Figure 1).

Insert Table 7 and Figure 1 Here

The present pattern of Cp values for the various subsets of

siZe 2 are typical when multicollinearity is present. The Cp

values initially become smaller, but then start to increase. The

plot of Cp values is similar to a "scree" plot in factor analysis

and as such a multiple regression method might also be useful in

determining the number of variables to retain (Zoski & Jurs,

1993) . The best subset model is indicated when the Cp values

begin to increase and cross the (p + 1) values (Figure 1).

Principal Components Regression

Principal components are obtained by computing eigenvalues

from the correlation matrix. The correlation matrix is used so

that variables are not affected by the scale of measurement as in

the use of a variance-covariance matrix. Since eigenvalues are

the variances of the principal component variables, the sum of

the eigenvalues equal the number of variables in the full model,

just as the sum of standardized variable variances would equal

the number of variables. This sum is the measure of the total

15
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variation in the data set. A wide variation in the eigenvalues

would suggest the presence of multicollinearity among the

variables. The number of eigenvalues greater than unity, as in

factor analysis, would indicate the number of variables from the

full model that would explain most of the variance in the data

set. The eigenvectors, in contrast, contain the coefficients for

each principal component variable. These coefficients are used

to create the observed values of the original variables. These

observed values are then used in multiple regression as

orthogonal predictor values with no multicollinearity present.

Preliminary inspection of the model components (Type II SS)

in Table 8 indicated three principal component variables (1,4,

and 8) that accounted for 69 % of the variance in predicting

college grade point average (7.42/10.76). The first model

component alone explained 39 % of the variance (4.16/10.76).

A comparison of the full model parameter estimates in Table

9 between the original correlated predictors and the principal

component rearession variables sheds better insight into the best

variable subset model selection criteria. The multiple

regression analysis with correlated predictors identified

motivation (2) and support (8) while the principal component

method identified attention (1), anxiety/worry (4), and support

(8).

Insert Tables 8 and 9 Here

6
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S UMMAR Y

The Cp criteria identified a four variable predictor model

as best: motivation (2), anxiety/worry (4), support (8), and

class preparation (9) . This four variable subset model was

further verified by examining where the plot of Cp values against

the (p + 1) values crossed. The Cp criteria selected the

smallest variable subset model in the presence of variable

multicollinearity. The principal components approach identified

attention (1), anxiety/worry (4), and support(8). In examining

the parameter estimates in the multiple regression analysis, only

motivation (2) and support (8) were significant relative to the

other predictors in the model. The Mallows Cp and PCR criteria

indicated slightly different sets of predictor variables

depending upon whether the independent variables were correlated.

In using multiple regression it is important to have a

theoretical basis for the regression model and to consider model

validation. A common misconception in multiple regression is

that the model with all the significant predictors included is

the best model. This isn't arways the case. The problem is that

the b's and R' values are data dependent due to the least squares

criterion being applied to a specific sample of data. A

different sample will usually result in different parameter

estimates and variance explained. Although the standard errors

of the b's do provide the researcher with some indication of the

amount of change expected from sample to sample, the fact remains
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that the estimates obtained from one sample may predict poorly

when applied to a new set of sample data. The primary method to

assess any change in estimates is to replicate the regression

model using other sample data. The Mallows Cp criteria was

similarly suspect because values were inflated upon cross

validation and the best variable subset model in one sample was

not identified in the other sample. Obviously, if the mean

square error estimates and the residual sums of squares

fluctuate, then model selection will be erroneous (see Mallows Cp

formula).

The rationale behind a regression model is to estimate a2

(the true model's mean square error variance) . Since a is not

generally known, a researcher must estimate it from a knowledge

of prior research (a' a'y,), obtain estimates from a model

containing all theoretically relevant predictors, replicate the

study, or use bootstrapping, jacknifing, and cross-validation

methods. In this regard, effect size considerations, as

recommended by Thompson et al. (1991), become important to

consider in evaluating a regression model.

1 8
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Table 5. Mallows Cp and principal components regression comparison
(sample 1, n=100).

Best Variable
Subset Model Mallows Cp

13 SE0,

Principal Components R-

SEr3

X10 .10 .02 5.00 .0001 .82 .16 5.13 .0001 .21

X3 .13 .03 4.33 .0001 .02 .15 .13 .90 .33

X8 .18 .04 4.50 .0001 1.05 .15 7.00 .0001

X3 .10 .02 5.00 .0001 .98 .12 8.17 .0001 .44

X8 .16 .03 5.33 .0001 .42 .14 3.00 .0024

X10 .07 .02 3.50 .0001 .21 .16 1.31 .1951

X1 .10 .03 3.33 .0009 1.04 .11 9.45 .0001 .50

X3 .10 .02 5.00 .0001 .07 .12 .58 .59

X8 .14 .03 4.67 .0001 .28 .15 1.87 .07

X10 .06 .02 3.00 .0004 .14 .16 .88 .39

X1 .11 .03 3.67 .0004 1.06 .10 10.60 .0001 .54

X3 .10 .02 5.00 .0001 .11 .12 .92 .35

X6 .06 .02 3.00 .0004 .07 .13 .54 .55

X8 .12 .03 4.00 .0001 .19 .15 1.27 .20

X10 .06 .02 3.00 .0004 -.02 .15 -.13 .90

X1 .09 .03 3.00 .0004 .97 .10 9.70 .0001 .58

X3 .10 .02 5.00 .0001 .42 .11 3.92 .0004

X5 .09 .02 4.50 .0001 .31 .12 2.58 .01

X8 .12 .03 4.00 .0001 .22 .14 1.57 .11

X9 .06 .02 3.00 .0004 -.11 .14 -.79 .43

X10 .06 .02 3.00 .0004 .17 .15 1.13 .26

X1 .10 .03 3.33 .0:104 1.02 .09 11.33 .0001 .62

X3 .09 .02 4.50 .0001 .41 .11 3.73 .0002

X5 .08 .02 4.00 .0001 -.10 .11 -.91 .37

X6 .05 .02 2.50 .03 .09 .12 .75 .45

X8 .10 .03 3.33 .0004 .16 .13 1.23 .24

X9 .06 .02 3.00 .0004 .20 .14 1.43 .16

X10 .05 .02 2.50 .03 .11 .14 .79 .44

33
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Table 5 (continued).

Mallows Cp and principal components regression comparison
(sample 1, n=100).

Best Variable
Subset Model Multiple Regression Principal Components R'

p SEp t. p p SE

X1 .10 .03 3.33 .0004 1.03 .09 11.44 .0001 .63

X2 .02 .01 2.00 .05 .18 .10 1.80 .09

X3 .09 .02 4.50 .0001 .03 .11 .27 .77

X5 .08 .02 4.00 .0001 .30 .11 2.72 .01

X6 .05 .02 2.50 .03 .01 .13 .08 .92

X8 .09 .03 3.00 .0004 .12 .13 .92 .36

X9 .05 .02 2.50 .03 .25 .14 1.78 .09

X10 .05 .02 2.50 .03 -.05 .14 -.36 .75

X1 .09 .03 3.00 .0004 .99 .08 12.38 .0001 .64

X2 .02 .01 2.00 .05 .24 .10 2.40 .02

X3 .08 .02 4.00 .0001 .03 .11 .27 .77

X4 .05 .03 1.67 .10 .10 .11 .91 .36

X5 .07 .02 3.50 .0004 -.08 .13 -.62 .52

X6 .05 .02 2.50 .03 .08 .13 .62 .52

X8 .09 .03 3.00 .0004 .02 .14 .14 .91

X9 .05 .02 2.50 .03 -.001 .14 .007 .99

X10 .05 .02 2.50 .03 .33 .15 2.20 .04

X1 .09 .03 3.00 .0004 .97 .08 12.13 .0001 .65

X2 .02 .01 2.00 .05 .27 .10 2.70 .008

X3 .08 .02 4.00 .0001 .05 .10 .50 .60

X4 .05 .03 1.67 .10 -.09 .11 -.82 .42

X5 .07 .02 3.50 .0004 .06 .11 .55 .59

X6 .05 .02 2.50 .03 .06 .12 .50 .60

X7 .02 .02 1.00 .25 -.07 .12 .58 .57

X8 .09 .03 3.00 .0004 .01 .14 .07 .94

X9 .04 .02 2.00 .05 .23 .15 1.53 .12

X10 .04 .02 2.00 .05 .19 .15 1.27 .21

Note: Regression parameters have been rounded to 2 decimal
places unless otherwise noted. The t value = 13

/ SE
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Table 6. LASSI Subscale inter-correlations, means and standard deviations
(n = 156).

LASSI Subscale (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1) Attention 1.00
(2) Motivation .59 1.00
(3) Time Management .39 .60 1.00
(4) Anxiety/Worry .32 .15 .09 1.00
(5) Concentration .57 .62 .62 .33 1.00
(6) Information .20 .15 .39 .03 .26 1.00
(7) Select Ideas .25 .36 .31 .37 .47 .30 1.00

(8) Support .24 .40 .47 .05 .38 .45 .40 1.00

(9) Class Prep. .38 .50 .63 .06 .55 .56 .39 .64 1.00
(10)Test Strategy .54 .47 .33 .50 .66 .20 .60 .21 .34 1.00

Mean
SD

34.33 33.12 24.91 28.38 28.56 28.94 18.32 26.03 27.36 31.46
4.17 4.73 6.18 5.92 4.93 5.24 3.51 5.96 5.84 4.58

Note: The values have been rounded to the nearest hundreths.
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APPENDIX

POPULATION, SAMPLE, PROC REG and PROC IML PROGRAM

* create population data set with y and 10 x variables;

data random;
drop n;
do n=1 to 10000;
y =10+sqrt(4)*normal(473123);
xl= 8+sqrt(16)*normal(897245) + y;
x2= 6+sqrt(64)*normal(987214) + y;
x3= 9+sqrt(32)*normal(123935) + y;
x4=12+sqrt(18)*normal(839857) + Y;
x5=18+sqrt(20)*normal(897245) + Y;
x6=16+sqrt(40)*normal(987214) + Y;
x7=29+sqrt(70)*normal(123935) + Y;
x8=32+sqrt(13)*normal(839857) + Y;
x9=24+sqrt(45)*normal(123935) + y;
xl0=2+sqrt(62)*normal(839857) + y;
id = n;
output;
end;

*population correlation matrix and regression analysis;

proc corr;var y xl-x10;
proc reg outest=est;model y = xl-x10/

selection.-rsouare cp best=1;
proc plot;plot _cp_ * _in_ = 'c' _p_ * _in_ = '*'/overlay;

* randomly sample 200 subjects from population data set;

data samplel;
retain k 200 n;
if _n_ = 1 then n=total;
int = 1;
set random nobs=total;
if ranuni(4740080) <= k/n then
do;
output;
k = k+1;

end;
n=n+1;
if k = 400 then stop;
id =
drop k n;

* create two randomly sampled data sets of size 100;
* repeat correlation and regression programs for each;
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* randomly select 100 subjects for estimation data set;

data sample2;
retain k 100 n;
set samplel nobs.total;
if _n_ = 1 then n.total;
select = 0;
if ranuni(716549) <= k/n then
do;
select = 1;
output;
k = k+1;

end;
n=n+1;
if k = 200 then stop;

proc corr data=sample2;var y xl-x10;
proc reg data.sample2 outest=est1;model y = xl-x10/

selection.rsquare cp best.1;
proc plot;plot _cp_ * _in_ = 'c' _p_ * = '*'/overlay;

* select remaining 100 subjects for cross validation data set;

data sample3;
merge samplel sample2; by id;
if select = 1 then delete;

proc corr data=sample3;var y xl-x10;
proc reg data=sample3 outest=est2;model y = xl-x10/

selection=rsquare cp best=1;
proc plot;plot _CD_ * _in_ = 'c' _p_ * _in_ = '1'F/overlay;

proc iml;

* This is a full model using the 10 variable estimation sample;

use sample2;
read all var {y) into y;
read all var {int xl x2 x3 x4 x5 x6 x7 x8 x9 x10} into x;

N=NROW(X); /* number of observations
K=NCOL(X); /* number of variables
XPX=X'*X; /* cross-products
XPY=X'*Y;
YPY
XPXI=INV(XPX); /* inverse crossproducts
B=XPXI*XPY; /* beta weights */

c = inv(xpx);
bHAT=c *
sse= yl*Y bhatl*x'*Y; /* sum of squares error
ybar = sum(y) / n;
yhat = x * b; /* predicted y values */

ssr = ssq(yhat ybar) ; /* sum of squares regression */
sst = sse + ssr; /* sum of squares total */

dfe = n -k; /* degrees of freedom error */

MSE102=SSE/DFE; /* mean squared error */

r2t = ssr / sst; /* rsquare */

r2p = r2t;
cp = ((1 / mse102) * sse) (n 2*k); /* mallows cp */
print "This is the Full model for estimation sample data" r2p cp;

44
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* Re-estimate using cross validation sample data;

use sample3;
read all var {y} into y;
read all var {int xl x2 x3 x4 x5 x6 x7 x8 x9 xl0} into x;

N=NROW(X);
K=NCOL(X);
XPX=X'*X;
XPY=X'*Y;
YPY = YI*Y;
XPXI=INV(XPX);
c = inv(xpx);
bHAT=c * x'*Y;
sse= y'*Y bhat'*x'*Y;
ybar = sum(y) / n;
yhat = x * b;
ssr = ssq(yhat ybar);
sst = sse + ssr;
dfe = n -k;
MSE103=SSE/DFE;
r2t = ssr / sst;
r2p = r2t;
cp = ((1 / mse103) * sse)

/* number of observations
/* number of variables
/* cross-products

/* inverse crossproducts

/* predicted values
/* sum of squares error

/* predicted y values */

/* sum of squares regression */
/* sum of squares total */

/* degrees of freedom error */
/* mean squared error */

/* rsquared */

(n 2*k); /* mallows cp */

print "This is the Full model for cross validation sample data" r2p cp;

* This is a 9 variable estimation model;

use sample2;
read all var (y1 into y;
read all var (int xl x2 x3 x4 x5 x6 x8 x9 x10} into x;

N=NROW(X);
K=NCOL(X);
t=k;
XPX=X'*X;
XPY=X'*Y;
YPY =
XPXI.INV(XPX);
B=XPXI*XPY;
c = inv(xpx);

/* number of observations

/* number of variables
/* cross-products

/* inverse crossproducts

bHAT=c * x'*Y; /* predicted values
sse= y'*Y bhatl*xI*Y; /* sum of squared errors
ybar = sum(y) / n;
yhat = x * b; /* predicted y values */

ssr = ssq(yhat ybar); /* sum of squares regression */
sst = sse + ssr;
r2p = ssr / sst; /* rsquared */

cp = ((1 / msel02) * sse) (n 2*k) ; /* mallow cp */

print "This is for" k " estimation model sample data" r2p cp;
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* Re-estimate using cross validation sample data;

use sample3;
read all var (y) into y;
read all var (int xl x2 x3 x4 x5 x6 x8 x9 x10) into x;

N=NROW(X);
K=NCOL(X);
t=k;
XPX=X'*X;
XPY=X'*Y;
YPY = YI*Y;
XPXI=INV(XPX);
c = inv(xpx);
bHAT=c * x'*Y;
sse= yl*Y bhat'*xF*Y;
ybar = sum(y) / n;
yhat = x * b;
ssr = ssq(yhat ybar);
sst = sse + ssr;
r2p = ssr / sst;
cp = ((1 / mse103) * sse) (n 2*k);
print "This is for" k " cross validation model sample data" r2p cp;

/* number of observations
/* number of variables

/* cross-products

/* idverse crossproducts

/* prdicted values */

/* sum of squares error

*************************************************************************
Repeat the above two steps of sas code in the 9 variable subset model
replacing the read all var statement for x with the remaining 8 variable
subset model, then repeat for the 7 variable subset model, etc. down to
the 1 variable subset model.

For example:

* This is an 8 variable estimation model;

read all var (int xl x2 x3 x5 x6 x8 x9 x10} into x;

* Re-estimate using cross validation sample data;

read all var (int xl x2 x3 x5 x6 x8 x9 x10} into x;

**************************************************************************
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SAS STATISTICAL PROGRAM
Applied Example

DATA LASSI;INFILE 'A:\LASSI.DAT';IF STATUS=1;
INPUT SEX 27 SATM 31-33 SATV 35-37 STATUS 55 CGPA 67-71

#2 (Q1-Q77) (77*1.0) #3;
LABEL CGPA = 'FIRST SEMESTER COLLEGE GPA';
* STATUS 1= 'CURRENT STUDENT' 2= 'WITHDREW';
* SEX 1= 'FEMALE' 2= 'MALE';
PREATT = Q5 + Q14 + Q18 + Q29 + Q38 + Q45 + Q51 + Q69;
PREMOT = Q10 + Q13 + Q16 + Q28 + Q33 + Q41 + Q49 + Q56;
PRETMT = Q3 + Q22 + Q36 + Q42 + Q48 + Q58 + Q66 + Q74;
PREANX = Ql + Q9 + Q25 + Q31 + Q35 + Q54 + Q57 + Q63;
PRECON = Q6 + Q11 + Q39 + Q43 + Q46 + Q55 + Q61 + Q68;
PREINP = Q12 + Q15 + Q23 + Q32 + Q40 + Q47 + Q67 + Q76;
PRESMI = Q2 + Q8 + Q60 + Q72 + Q77;
PRESTA = Q7 + Q19 + Q24 + Q44 + Q50 + Q53 + Q62 + Q73;
PRESFT = Q4 + Q17 + Q21 + Q26 + Q30 + Q37 + Q65 + Q70;
PRETST = Q20 + Q27 + Q34 + Q52 + Q59 + Q64 + Q71 + Q75;
LABEL PREATT = 'ATTITUDE AND INTEREST'

PREMOT= 'MOTIVATION'
PRETMT= 'TIME MANAGEMENT'
PREANX= 'ANXIETY AND WORRY'
PRECON= 'CONCENTRATION AND ATTENTION'
PREINP= 'INFORMATION PROCESSING'
PRESMI= 'SELECT MAIN IDEAS'
PRESTA= 'SUPPORT TECHNIQUES AND MATERIALS'
PRESFT= 'SELF TESTING AND CLASS PREPARATION'
PRETST= 'TEST STRATEGIES';

PROC REG; MODEL CGPA = PREATT--PRETST;
PROC REG OUTEST=EST; MODEL CGPA = PREATT--PRETST/

SELECTION = RSQUARE CP BEST=1;
PROC PLOT;PLOT _CP_ * _IN_ = 'c' _P_ * _IN_ = '*'/OVERLAY

VAXIS= 0 TO 12 BY 1 HAXIS = 0 TO 10 BY 1;
PROC PRINCOMP DATA=LASSI OUT=PRIN;VAR PREATT--PRETST;
PROC REG; MODEL CGPA = PRIN1-PRIN10/SS2;
RUN;
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